
Cloudoscopy:

Services Discovery and Topology Mapping

Amir Herzberg⇤

Computer Science
Department

Bar Ilan University
Ramat Gan, Israel

Haya Shulman†

Fachbereich Informatik
Technische Universität
Darmstadt/EC-SPRIDE
Darmstadt, Germany

Johanna Ullrich‡

SBA Research gGmbH
Wien, Austria

Edgar Weippl§
SBA Research gGmbH

Wien, Austria

ABSTRACT
We define and study cloudoscopy, i.e., exposing sensitive
information about the location of (victim) cloud services
and/or about the internal organisation of the cloud net-
work, in spite of location-hiding e↵orts by cloud providers.
A typical cloudoscopy attack is composed of a number of
steps: first expose the internal IP address of a victim in-
stance, then measure its hop-count distance from adversar-
ial cloud instances, and finally test to find a specific instance
which is close enough to the victim (e.g., co-resident) to al-
low (denial of service or side-channel) attacks. We refer to
the three steps/modules involved in such cloudoscopy at-
tack by the terms IP address deanonymisation, hop-count
measuring, and co-residence testing.

We present specific methods for these three cloudoscopy
modules, and report on results of our experimental valida-
tion on popular cloud platform providers. Our techniques
can be used for attacking (victim) servers, as well as for
benign goals, e.g., optimisation of instances placement and
communication, or comparing clouds and validating cloud-
provider placement guarantees.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; C.2.1 [Computer-Communication
Networks]: Network Architecture and Design—Network
topology ; C.2.4 [Computer-Communication Networks]:
Distributed Systems—Client/server, Network operating sys-
tems

⇤

amir.herzberg@gmail.com

†

haya.shulman@gmail.com

‡

jullrich@securityresearch.at

§

eweippl@sba-research.org

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCSW’13, November 8, 2013, Berlin, Germany.

Copyright 2013 ACM 978-1-4503-2490-8/13/11 ...$15.00.

http://dx.doi.org/10.1145/2517488.2517491.

Keywords
Cloud security; timing side-channels; cloud tomography; I/O
performance; hardware interrupts; low rate attacks

1. INTRODUCTION
Cloud computing services allow scalable and e�cient shar-

ing of resources, via the use of virtualisation. Resources,
such as computing, storage, network and other services are
allocated only when needed, and on a pay-per-use basis.
Tenants can rent virtual machines (VMs) according to their
needs with the required amount of storage, CPU, and other
resources. These advantages are predominant factors for the
(growing) popularity of cloud computing.

However, placement of services and resources in clouds
and sharing thereof (i.e., multi-tenancy) raises security and
trust concerns. Indeed, there are significant security issues,
that still need to be addressed, most notably, availability
and privacy of the data, e.g., see [5, 8, 11]. These issues
serve as a deterrent to wide adoption of the cloud computing
model by organisations. One natural question is whether
customers can trust the cloud provider to operate fairly, as
expected and guaranteed; In this work, we focus on di↵erent
aspects, related to security threats that stem from network
sharing with other cloud tenants. Specifically, we address
the following questions:

• Which defenses can cloud providers deploy to prevent
attacks on their customers (by external attackers and
by malicious customers)?

• What is the significance of each defense, and in par-
ticular, which defenses can be substituted or comple-
mented by a customer-implemented defense mecha-
nism (and at what costs)?

• How can customers check such defenses on a specific
cloud (e.g., to choose among clouds or to verify guar-
antees of a cloud provider)?

• Which defenses are deployed by popular clouds? Do
popular clouds provide the same defenses, or are there
significant di↵erences?

Physical co-residence with other cloud tenants poses a par-
ticular risk. The ability to attack cloud-based resources, of-
ten depends on whether the attacker is able to detect the lo-
cation of victim services, and has the ability to place its own

amir.herzberg@gmail.com
haya.shulman@gmail.com
jullrich@securityresearch.at
eweippl@sba-research.org

instances on the same physical cloud host (‘co-residence’) or
on the same network segment. For example, [31] showed
that sharing of resources between instances of di↵erent cus-
tomers, may allow attacks on one cloud application, by an-
other application running on the same physical machine.

Therefore, cloud providers usually take steps to ‘hide’ the
exact identity of the physical server running the hosted cloud
services as well as the structure of their internal network
(and of particular servers within it). In particular, to pre-
vent identification of services placement, clouds often use a
random mapping between external IP addresses (of hosted
services) and the internal IP addresses (of the virtual in-
stances running the services), and/or employ other separa-
tion techniques, e.g., see [29]. On the other hand, there
are legitimate uses for such ‘location information’, for opti-
misation or even security, e.g., to ensure that, as promised
by the cloud provider, customer instances are isolated from
potential attackers and vulnerabilities.

As we show in our work, one of the factors allowing ser-
vices’ placement location is internal communication between
the tenants. Indeed, cloud providers that allow internal
communication between tenants often facilitate our attacks.
However, merely blocking internal communication may not
be a plausible solution, since there is an increasing amount of
tenant-to-tenant and tenant-provider communication, which
amounts up to 35% of the total datacenter tra�c and is ex-
pected to continue growing in diversity and volume, see [2,
28].

In this work we investigate cloudoscopy, i.e., exposing sen-
sitive information about the location of (victim) cloud ser-
vices and/or about the internal organisation of the cloud net-
work, in spite of location-hiding e↵orts by cloud providers.
The term cloudoscopy reflects the fact that we utilise nodes
inside the cloud networks to perform our measurements, i.e.,
services placement inference and topology discovery. Clou-
doscopy can be compared and contrasted with Internet to-
mography, [9], which measures its internal structure, utilises
nodes only on the edge of the Internet.

We identify and propose three modules comprising a clou-
doscopy attack: first expose the internal IP address of a vic-
tim, then measure its hop-count distance from adversarial
cloud instances, and finally test to find a specific instance
which is close enough to the victim (e.g., co-resident) to al-
low (denial of service or side-channel) attacks.

We next describe our cloudoscopy modules, and present
novel technique to implement each of them:

IP address deanonymisation allows the attacker to dis-
cover the internal IP address mapped to a given exter-
nal IP address.

Hop-count measuring is a simple, e�cient technique that
allows the attacker to learn the number of network seg-
ments between an instance of the attacker, and other
instances (usually, of victims). This allows detection
when the two instances are on the same subnet (or on
the same physical machine); it also allows learning the
subnet topology of the cloud.

Co-residence verification allows the attacker to test if
two instances co-reside, i.e., deployed on the same phys-
ical host.

These three modules may often be used in sequence. First,
the attacker uses IP address deanonymisation to find the in-

ternal IP address of some victim service (using the publicly
known external IP address). Next, the attacker uses hop-
count measuring to find the path to the victim instance.
Finally, attacker uses co-residence verification to test collo-
cation with a victim service.

For instance, assume a victim instance, residing on the
same physical host as the attacker, runs, e.g., a vulnera-
ble operating system version, or a vulnerable web server,
for which an exploit is available. A malicious VM can ex-
ploit these bugs to attack the virtualisation software, or may
abuse them to attack tenants running on the same host,
e.g., [41]. Exploiting such an attack vector would give the at-
tacker the ability to attack or access other virtual machines
and therefore breach confidentiality, integrity, and availabil-
ity of the other virtual machines’ code or data. Furthermore,
by exploiting a bug, the attacker may be able to take con-
trol over the lower layers of the platform. For instance, there
have been dozens of reported vulnerabilities from CVE for
Xen hypervisor, e.g., it was found that a Xen3 hypervisor
contained bu↵er overflow exploits and other bugs allowing
code execution in administrative domain, e.g., [39, 40]. It is
also possible to abuse cross VM leakage to learn secret data,
such as secret keys, via side channels, e.g., [3, 26, 31], or to
launch network attacks, e.g., DoS, against a victim.

Previous work, in particular Ristenpart et al, [31], de-
pended on IP address deanonymisation, but used only sim-
ple techniques to achieve it, e.g., traceroute/ping. However,
following their publication, popular clouds blocked these
simple mechanisms. No other IP address deanonymisation
techniques were proposed so far. In this work we present
techniques that enable IP address deanonymisation.

We propose two techniques for IP address deanonymisa-
tion: interrupt-overloading side-channel and server-bounce
scan. The server-bounce scan technique uses the fact that
in some protocols, e.g., SMTP, servers open a connection
using a domain name from an incoming connection. This
allows server-bounce scan to be extremely e↵ective, requir-
ing only very few packets for discovery of service that runs
on some instance, but limits it to specific types of servers
(e.g., SMTP). The other technique, interrupt-overloading
side-channel, is general and not protocol specific; interrupt-
overloading side-channel is based on overloading the server
with multiple interrupts due to transmission of a burst of
(minimal size) packets. Both of our address discovery mech-
anisms are limited: they do not apply to cloud providers that
block connections from internal addresses, e.g., Microsoft
Azure. However, often internal communication has to be al-
lowed, e.g., to reduce costs or to improve quality of service,
and there is an increasing amount of tenant-to-tenant com-
munication, [2, 28]; indeed, some popular cloud providers
allow communication between internal hosts, e.g., Amazon
AWS, Rackspace Cloud Servers.

Our interrupt-overloading side-channel exploits hardware
interrupts that I/O devices generate to signal packet arrival
to the kernel. Hardware interrupts are known to impose
significant overhead [23,44], and there is research proposing
techniques to reduce interrupts, in standard setting, [33,47],
and in virtualised environments [25,45] (where the interrupt
overhead is even increased, see [4]), by reducing the number
of interrupts. However, this is not trivial and may have a
negative impact on the performance of the system [35].

We also propose techniques for hop-count measuring and
co-residence verification, which apply also to cloud providers
that block internal communication.

We found that Amazon AWS EC2 and Rackspace Cloud
allow (all) communication between internal hosts, and so our
IP address deanonymisation attacks apply to them. In con-
trast, Microsoft Azure blocks (all) communication between
internal hosts, and Google Compute Engine restricts inter-
nal communication to hosts belonging to the same project.
Restricting communication to internal hosts prevents IP ad-
dress deanonymisation, but does not prevent hop counting.
We summarise our attacks against di↵erent cloud providers
in Table 1.

One of the implications of our work is that internal com-
munication between tenants introduces security vulnerabil-
ities which should be considered when designing defenses.

Our Contributions
We study vulnerabilities in cloud networks, and present tech-
niques that enable attackers: (1) to perform victim IP ad-
dress deanonymisation, and correlation between internal and
external IP addresses, (2) to infer information about the
cloud network topology and (3) to learn proximity to the
victim and even obtain information about the cloud net-
work topology. We outline the techniques we used to elicit
various side channels, and apply them for our attacks, and
provide our recommended countermeasures.

We introduce a new technique, interrupt-overloading side-
channel, which can be used to elicit side channel allowing
to infer placement information. The applications of our
technique can be twofold: (1) for benign purposes, to ver-
ify the service which the cloud provider guarantees to sup-
ply, and (2) for malicious purposes for discovery of victim
hosts within the cloud. We show how to apply interrupt-
overloading side-channel for address and for co-residence
verification of victim hosts.

We also show, that often protocol specific techniques exist,
which can be used for address deanonymisation, and design
a method enabling location of Email servers hosted in the
cloud.

We then propose a TTL scan technique which, once the
private address of a victim is known, allows to reconstruct
a path to that instance, and can also be used to infer infor-
mation about cloud network topology.

Cloud Address Hop Coresidence

Provider Deanonymisation Count Verification

Amazon (EC2)
p p p

Rackspace Cloud
p p p

Microsoft Azure X X
p

Google Compute X same
p

Engine project

Table 1: Summary of attack techniques that apply
to selected (popular) cloud providers.

2. RELATED WORK
Recently there was a surge of works showing that logical

isolation between the virtual machines (VMs) may not pre-
vent side channel attacks and it may often be possible to
bypass isolation between virtual machines running on the

same physical host, [3, 31, 38, 46, 49, 50]. These attacks ex-
ploit shared resources, most notably caches, to elicit side
channels, allowing to infer information about sensitive data
and computation performed by the coresident victim, and
are typically applied to extract the secret keys, [1,10,12,43].

The side channels are inherent in the virtualisation con-
cept of sharing a common physical resource among a num-
ber of virtual machines. The hypervisor interacts with the
virtual machines, emulates the physical resources to them
and coordinates access to the shared resources between the
virtual machines. A malicious virtual machine can exploit
this interaction to attack the hypervisor or other virtual ma-
chines that reside on the same physical host. This may often
provide the attacker the ability to attack other virtual ma-
chines, and, e.g., breach confidentiality, integrity, and avail-
ability of the other tenants’ instances services, code or data.
Such vulnerabilities make many companies hesitant about
moving to the cloud.

There is a wide body of research proposing defenses against
attacks that exploit multitenancy, most notably works that
attempt to improve virtualisation security, including inter-
VM isolation, and security of hypervisor communication with
the VMs. There are also mechanisms for detection of anoma-
lies, and proposals for alternative cloud architectures, secure
designs of cloud storage, as well as secure cloud software and
hardware designs, e.g., [15,24]. We next survey some of the
proposals.

There are many works that attempt to improve the secu-
rity of the virtualisation systems, e.g., [48] propose a trans-
parent and backward-compatible approach, based on nested
virtualisation, to protect the privacy and integrity of cus-
tomers’ virtual machines on commodity virtualised infras-
tructures. Another approach, [27], proposes to split the hy-
pervisor into smaller components. Preallocation of resources
to prevent attacks, was proposed in [42], that devise a mech-
anism that eliminates vulnerabilities pertaining to commu-
nication between the virtual machines and the hypervisor by
preallocating memory and processor cores, in order to allevi-
ate the need in hypervisor to allocate resources dynamically.

There is also an e↵ort to design anomaly detection tech-
niques that would identify malicious instances or malicious
behaviour, as well as design of systems to identify vulner-
abilities in legitimate virtual machines and systems. For
instance, [18] devise a security framework for cloud com-
puting that, among others, enables detection of abnormal
or anomalous behaviour and detection of vulnerabilities in
programs (and patches thereof). CloudER, [7], present an
architecture that automatically detects and patches software
vulnerabilities in cloud applications at runtime.

A secure storage design is explored in a number of works,
e.g., [6, 16, 19, 32] and di↵erent architectures and crypto-
graphic techniques are considered.

However, relatively little attention is being paid to network-
based attacks, specifically, network-based side channels, which
may enable attackers to deanonymise IP addresses of public
services. This phase often serves as a stepping stone towards
more devastating and targeted attacks, e.g., denial of ser-
vice, or information theft via shared memory side-channels.
The attacker can also apply IP deanonymisation techniques
to achieve coresident placement of a malicious instance, on
the same physical host as a victim. Indeed, very few pro-
posed defenses address such a threat, and in this work we
set forth to investigate, what such techniques can achieve

and whether address deanonymisation and coresidence de-
tection are still feasible attack vectors. We show di↵erent
techniques that are e↵ective on popular cloud providers’ net-
works, and that cannot be prevented with the defense mech-
anisms proposed in prior art. In particular our attacks apply
to cloud providers that patched their networks following at-
tacks of [31].

3. IP ADDRESS DEANONYMISATION
In this section we present techniques allowing to deanonymise

the public services via discovery of their internal IP ad-
dresses. IP address deanonymisation is applicable only to
cloud platforms which allow communication between inter-
nal instances, e.g., Amazon AWS EC2, Rackspace Cloud.

We first present a generic technique, which allows discov-
ery of the victim’s IP address regardless of the services that
it runs. Subsequently, we show techniques, tailored at a
specific service, which allow for a more e�cient deanonymi-
sation of internal services.

In contrast to prior art, our approaches do not require
acquisition of multiple hosts, [3, 31].

3.1 Address Discovery via Interrupts
We introduce a technique, interrupt-overloading side-channel,

which we utilise for discovery of internal IP address of some
public host. We first provide a background required to de-
scribe our technique and then show how to apply it.

3.1.1 Interrupt Driven Scheduling
The kernels in operating systems (OSes), e.g., Unix and

Microsoft platforms, use hardware interrupts for event noti-
fication purposes in communication with input/output hard-
ware components. Network interface cards (NICs) generate
interrupts to notify the kernel of arrival or transmission of
new packets. When a NIC receives a packet it triggers a
hardware interrupt. As a result, the CPU suspends its cur-
rent activity and executes an interrupt handling routine, the
kernel processes the packet and invokes the relevant proto-
col, e.g., UDP, for further packet handling. The kernel pro-
cessing of packets continues as long as there are packets in
the system bu↵er. The kernel processing can be preempted
by interrupt handling procedure, as a result of new packets’
arrival.

Hardware interrupts can impose a significant CPU over-
head. This is due to the fact that hardware interrupt is
associated with context switching of saving and restoring
processor state, see discussion in [20], and a typical inter-
rupt handling latency, due to packet arrival, in Linux is in
order of 50 µsec, see [34].

After the notification of a new packet arrival the kernel
processes the packet, and then invokes TCP/IP protocol
processing. Since the operating systems assign higher pri-
ority to hardware interrupts, than to other tasks, arrival of
a new packet disrupts protocol processing. Under high traf-
fic load, tasks with lower priorities may reach starvation,
since the system is busy spending all of its time processing
interrupts for arriving packets, see [21,30].

High packets’ arrival rate also has a negative impact on
packet transmission, since inbound packets’ handling routine
has higher priority over packets’ transmission routine.

The problem with the overhead of hardware interrupts
is further exacerbated in virtualised environments, where

the number of interrupts is multiplied, due to host-vs-guest
context switches, [17].

Inbound packet handling slightly di↵ers between di↵er-
ent operating systems. It was shown, e.g., [34], that Linux
significantly outperforms Windows OS. Linux kernel net-
working supports a Linux New API (NAPI) packet han-
dling mechanism, [36], in its processing and scheduling of
incoming packets, which reduces the frequency of generated
interrupts. NAPI was designed to handle high tra�c rates
of fast Ethernet. Therefore, in our experimental evaluation
we focus on Linux kernel 3.2.0 OS, and our results also apply
(with an even more significant impact) against Windows OS
platforms.

We show how to exploit this property to create a side
channel, allowing to deanonymise the internal IP address
assigned to some public service.

3.1.2 Interrupt-Overloading Side Channels
The idea is to apply interrupt-overloading side-channel to

introduce patterns into the communication flow. By inspect-
ing the tra�c the attacker can learn information whether the
burst was sent to a correct address.

Recently, [14] applied socket overloading, to cause packet
loss at the receiving end host, for port derandomisation. The
attack of [14] required sending packets to di↵erent destina-
tion ports (sampling each port). When a correct port is
sampled, packets’ loss occurs. The attacker uses this tim-
ing channel (of response latency) as indication of a correct
guess. In contrast, in our work, we do not attempt to guess
the port at the receiver, and our goal is to discover the in-
ternal IP address of the victim host; thus, we can send our
packets’ burst to any port of the receiver, which adds a delay
to all connections that the victim host maintains.

The scenario that we consider is illustrated in Figure 1.
An attacker, that wishes to discover an internal IP address
of some victim service, sets up two types of instances: ma-
licious client and probers. The client connects to a victim
service via a public IP address (alternately a public domain)
of the victim, e.g., downloads a file or a web page; the client
can reside either on the cloud platform, or can be set up
on a host outside of a cloud network. The attacker then
instructs the probers to send bursts to di↵erent destinations
in the address block range, and inspects the communication
from the victim server, looking for patterns.

The idea is that upon arrival at the victim host, the burst
of packets impacts the transmission and processing times of
the victim, introducing delays into the sent packets. If de-
lays, corresponding to the timing and volume of the burst(s),
are observable in the tra�c, then the correlation between
the external and internal addresses of the victim is found.
Otherwise, the prober proceeds to the next IP address. In
order to increase the e↵ectiveness of the burst, the attacker
should increase the concentration of the burst volume. No-
tice that the host, sending the bursts, (inevitably) adds de-
lays to transmitted packets, e.g., among other factors also
due to hardware interrupts, and thus the burst is slightly dis-
persed. We show how to overcome this issue by distributing
a burst among a number of probers.

In our experimental evaluation we set up the attacker, as
well as the probers, as instances on a cloud; see Figure 1. We
also set up a number of victim hosts, that acted as public
servers and served files upon requests. We report on our
results of our evaluation in Section 3.1.3.

Cloud
victim

prober

Benign

connection

command
channel

burst

Client

NICNIC

Figure 1: Setting and attacker model. The attacker
controls a prober instance and a malicious client,
and uses them to deanonymise the IP address of a
victim service.

3.1.3 Experimental Evaluation
Our experimental setup consists of a victim, a malicious

client and probers, see setting in Figure 1. In this section
we report on experiments that were performed on Amazon
AWS EC2 cloud network. All our instances run on Ubuntu
server 12.04.2 LTS (32 bit) linux kernel OS.

The victim is a legitimate public service, e.g., web, file
or email, running on a host on a cloud network. We set
up an http web server that serves files, of variable sizes, to
clients upon request. The victim has a public hostname and
address, and also internal hostname and internal address
(which are not known to the attacker).

The probers are tenants on the cloud, while the client can
be on a host outside of the cloud network, or can also reside
on the cloud; in our evaluation, reported in Figure 3 and
Figure 4, we placed the client along with the probers on the
cloud. Notice that, when the attacker is on the cloud, since
no outbound/inbound (to/from the cloud) communication
is generated, no costs apply on the attacker.

The client establishes a connection to the victim host via
its public hostname, whose internal address it wishes to find,
and requests a file, in our evaluation results, reported be-
low, we used 100KB files. The client controls the probers,
and invokes them to send the bursts. The bursts are UDP
datagrams of variable sizes. The synchronisation between
the client and the probers was implemented as follows: the
probers listen on an agreed port and once they receive a
command from the client with a destination port and IP
address, burst size and burst frequency, they start probing
the target. The client then inspects the flow from the victim
host, searching for patterns that correspond to the burst size
and timing, generated by the probers.

We wrote a python file transfer script which the client
used to contact the server (over TCP) and to download files.
The probers were configured with a user-space C code, trans-
mitting a burst of raw UDP packets of a specified size, in
specified intervals.

Two configurations were tested for victim server, m1.small
and m1.large, see Table 2; quantities in ECU1; our evalua-
tion results, reported in Figure 2 and 4, pertain to configura-
tion using m1.large instance for victim service. The probers
and the client all run on micro type (free) instances. In our

1ECU is one EC2 Compute Unit provides the equivalent
CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processor.

experimental evaluation below, we set up all our instances
on the same cloud availability zone2.

Hardware m1.micro m1.small m1.large
CPU < 2 ECU 1vCPU w/1 ECU 2vCPU w/4 ECU
RAM 0.615GB 1.7GB 7.5GB

Table 2: Configuration of instances’ types used in
our evaluation on Amazon AWS EC2.

We evaluate the impact of (a burst of) inbound packets,
on the latency inflicted on outbound packets, as a result of
hardware interrupts, and the ability of a victim server to
transmit packets during reception of a burst. Our goal is to
craft the smallest possible packets’ burst that would su�ce
to introduce noticeable (timing) patterns into the communi-
cation. Our technique exploits the fact that inbound pack-
ets have higher priority over outbound transmissions, and
therefore the burst is expected to introduce delays into the
transmitted flow.

The main factors impacting the e�cacy of the burst are
packets’ sizes, number of packets and packets’ concentration,
i.e., the less dispersed the burst is, the higher the interrupt
rate at the receiver, and as a result, also the perceived la-
tency at the attacker’s client.

Intuitively, it may seem that large packets should be op-
timal in their ability to overwhelm the receiving system.
However, as we show, in Figure 2, small packets of 100 bytes,
among the sizes that we tested, turn out to be best, since
they introduce a maximal number of interrupts; notice that
smaller packets than 100 bytes could be used, but the di↵er-
ence in latency at the receiver is negligible. In our evaluation
of the additional latency inflicted on the receiving host, in
Figure 2, we used a single burst of 2000 packets per second.

0

10

20

30

40

50

60

70

80

90

100

16 32 64 128 256 512 1024

C
D

F
%

Latency (ms)

Packet Size
1500 bytes
1000 bytes
500 bytes
100 bytes

Figure 2: Evaluation of optimal packets’ sizes with
respect to the additional latency due to inflicted in-
terrupts.

Burst concentration, i.e., the number of arriving packets
over some time interval, is another factor which impacts the
e↵ectiveness of the attack. An impact of a dispersed burst
is lower than that of a condensed burst. In particular, if
the inter-packet delay, in arriving tra�c, is large enough, to
allow the receiving host to process each packet before the
arrival of a new one, then, even a large burst may not intro-
duce significant delays into the tra�c flow. In contrast, a

2Notice that since all our communication is within the cloud
boundaries, no charges apply on the attacker.

su�ciently concentrated burst, consisting of just a few hun-
dreds of packets, results in a noticeable impact. Notice that
each physical host, i.e., the prober that sends the burst, as
well as the routers en-route, introduce their own interrupts
when forwarding the packets. To address this problem and
enhance the e↵ectiveness of the burst, we propose to dis-
tribute the burst among a number of hosts, such that each
sends a fraction of the volume to the recipient in parallel. A
related factor is burst volume, i.e., number of packets com-
prising a burst: the more packets in a burst, the higher the
impact is. We test the burst e↵ectiveness using two burst
sizes, of 1000 packets and 2000 packets, and with a single
prober instance, two prober instances and three prober in-
stances; in our evaluation we used uniform packets’ size of
100 bytes. We report on the results of our evaluation in
Figure 3.

0

10

20

30

40

50

60

70

80

90

100

0.125 0.25 0.5 1 2 4 8

C
D

F
%

Latency (ms)

Attacker#, Burst
1, 2000
1, 1000
2, 2000
2, 1000
3, 2000
3, 1000
no attack

Figure 3: Evaluation of latency with variable burst
sizes, of 1000 and 2000 packets, each packet of size
100 bytes, and using a single prober, two probers,
and three probers.

Finally, we tested the success rate, of detecting the cor-
rect (victim) instance, among a pool of instances, using our
techniques of sending bursts to potential victims and mea-
suring the timing patterns in communication to the target
victim. In our evaluation, reported in Figure 4, we use uni-
form packets’ size of 100 bytes, and generate a single burst.
We tested the e↵ectiveness, of correct identification of the
victim, using variable burst size (which we express as a rate
per second in Figure 4) and di↵erent probers’ number, be-
tween 1 and 3. As can be seen, with a relatively small burst
size, consisting of up to a 1000 packets per prober (using
three probers), the attacker can reach above 60% success
probability of correctly identifying the victim.

In our experimental evaluation we used the services that
we set up to emulate the victim services. Discovery of real
public services may be more challenging, in particular, since
multiple clients connect to public services and thus will po-
tentially introduce more noise into our measurements. To
cope with the noise the attacker may be required to gener-
ate larger and more frequent (e.g., more than one) bursts,
and can also utilise more probing hosts in an attack to con-
centrate the burst. Furthermore, the attacker may need
to apply di↵erent encoding schemes, to filter out noise and
identify the timing patterns that correspond to its bursts.

3.2 Email Server Discovery
We present two techniques for discovery of internal ad-

dress of email servers. One is via a scan of internal ad-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500

Su
cc

es
s

Pr
ob

ab
ilit

y

Burst Rate (KB/sec)

3 hosts
2 hosts
1 hosts

Figure 4: Success rate evaluation of host deanonymi-
sation.

dress block, while the other is via external. Notice that to
pass anti-spam validation that legitimate email servers per-
form, the attacker should set up the required SPF and PTR
records (via the cloud provider). These records also allow
discovery of resolvers, which the email servers use, since they
will trigger DNS requests to attacker’s domain.

3.2.1 Internal Address Block Scan
The attacker sets up email and name server instances,

and sends email to every address in the network block, and
monitors responses. Hosts that respond are recorded.

Notice however, that Amazon requires that all tenants
apply, via a special procedure, to obtain a permission to
make outgoing connections on port 25. Packets to port 25
are monitored, and after a threshold (couple of thousands)
of packets, Amazon operators issue an email notifying the
account owner of this event.

To circumvent this restriction the attacker should dis-
tribute the scan over multiple hosts.

We next present a technique that allows for an e↵ective
discovery of email and DNS resolver services, via external
network scan.

3.2.2 Server-Bounce (External) Scan
The attacker sets up two email servers: one external, i.e.,

outside of a cloud network, and another internal, i.e., set
up as instance on a cloud network; we used postfix for both
email servers in our experimental evaluation. The attacker
scans the external IP address block of the cloud, and sends
email to each address that responds to packets sent to port
TCP:25.

The emails are sent to a non existing recipient, via the
receipt to header (instantiated with a random email ad-
dress), and with a ‘spoofed’ mail from address, indicating
the address (or equivalently the internal hostname) of the
internal email service that the attacker apriori set up in the
cloud. These emails result in delivery sender notification
(‘bounce’) messages (since the destination is a non-existent
email address), that are sent by the (victim) mail servers to
our internal host. The host runs a packet capture tool (tcp-
dump) and records the identity3 and addresses of the mail
servers that send the notifications.

Notice that email servers that support anti-spam and anti-
phishing mechanisms also send requests, via their resolvers,

3Email servers identify themselves via the helo header of
the SMTP protocol.

for SPF records of the domain indicated in the mail from

field; the attacker can set up these records in the zone file of
the DNS server authoritative for its domain. The SPF/PTR
queries, also expose the address of the caching DNS resolver
which the email servers use.

We applied this attack to two address blocks of US East
(Northern Virginia), 54.224.0.0/16 and 54.213.0.0/16. Out
of 65535 addresses on 54.224.0.0/16, we found 1336 respon-
sive hosts, of which: 1121 sent a RST in response to our
connection request, while the remaining 215 responded with
a SYN/ACK, and accepted our email. In 54.213.0.0/16 ad-
dress block, 544 addresses responded with a RST and 109
accepted the email connection.

3.3 Cloud Scan and Evading Detection
While the cloud providers explicitly prohibit scans of their

networks, they are still possible. Furthermore, a diligent at-
tacker can scan the entire network staying well under the
detection radar. Amazon imposes quotas on scans rate, and
on a number of scanned hosts. But these limits can be over-
come by distributing the scan among a number of adversarial
hosts. Furthermore, to evade detection, instead of running
traditional scans of addresses, where the probes are sent to
sequentially incrementing addresses, the attacker may use
a pseudorandom scan, whereby the internal addresses are
selected pseudorandomly; e.g., if a cloud service runs an in-
trusion detection system, and inspects the tra�c volumes4.

4. HOP-COUNT MEASURING
In this section we present techniques allowing to recon-

struct paths to some destination, and even reconstruct the
entire map of the cloud. We first describe the technique and
then our applications thereof.

After discovering the internal IP address of the victim
service5, e.g., by applying techniques, presented in previous
section, the attacker can test proximity to it, by perform-
ing a hop-count measuring test, described in Figure 5 and
illustrated in Figure 6. The idea is to reconstruct the path,
between the attacker and the victim, by performing a TTL
scan. The idea is to use the time to live field in the IP
header. The attacker creates a TCP SYN packet, starting
with TTL=1, subsequently incrementing the TTL in each
transmitted packet, and sends it to the destination. Notice
that the receiver cannot use the naive TTL measurement,
whereby the receiver learns the route by inspecting the TTL
in packets which it receives, since routers may change the
TTL value with some default value. Our TTL scan tech-
nique is not sensitive to such modification by intermediate
routers. Our technique assumes a standard behaviour of the
routers, i.e., each router, en-route on the path between the
attacker and the destination, decrements the TTL and for-
wards the packet. If the TTL reaches 0, the router discards
the packet, and typically returns an ICMP error. However,
following the attack of [31] cloud Amazon EC2 block ICMP
messages to prevent attackers from scanning of their net-
work. Thus routers silently discard packets with TTL = 0.

4During our experimental evaluation on Rackspace the op-
erators contacted us inquiring on our activity.
5Notice that the attacker can also learn information about
cloud topology using public IP addresses. However, this
information only allows to learn the path of packets that
traverse the NAT.

We therefore use timers, and at each timeout event we in-
crease the TTL and retransmit the packet. When the packet
reaches the destination, a SYN/ACK packet (or a RST in
case the port is closed) is returned. This procedure allows
us to reconstruct the path to the victim destination; see
pseudocode in Figure 5.

input: ip

for i in range(255):

construct TCP SYN packet to dest port 22

request = IP(dst=ip, ttl=i)/TCP(dport=22,flags="S")

send request, receive response

response = sr1(request, retry=0, timeout=1):

if response:

if response is a TCP packet

if response.proto == 6:

print "Victim is "+str(i)+" hops away";

break

Figure 5: Hop-count measuring.

A TTL = 0 to some destination, is an indication of a
potential co-residence, but not a guarantee. This depends
on whether the hypervisor reports itself as a hop on the
path from the instances on a physical host; for instance,
this holds in Amazon EC2, see [31]. To conclude definite co-
residence, the TTL hop-count measuring technique should
be used in tandem with interrupt-overloading side-channel.
Specifically, when TTL = 0 to some destination is reported,
the attacker should confirm co-residence by launching bursts
at the destination and looking for patterns in its connection
to the victim, as described in Section 5.

We tested hop counting on a number of providers, and
report on findings in Table 1. We found that Amazon AWS
EC2, Rackspace Cloud, and Google Compute Engine are
vulnerable to hop counting. While on EC2 and Rackspace, it
is possible to perform hop counting to every host, on Google
Engine the techique is restricted to hosts belonging to same
project (namely, the attacker can only use this technique to
learn the topology of the cloud using its own instances). Mi-
crosoft Azure block internal communication, and therefore
hop counting on the internal network between internal hosts
is not possible on their network.

victim Attacker

TTL=0
dst victim
TCP SYN

TTL=0
dst victim
TCP SYN

If ttl = 0: discard
Else: reduce ttl

Forward

TCP
SYN/ACK

TCP
SYN/ACK

TTL=1
dst victim
TCP SYN

TTL=1
dst victim
TCP SYN

TTL=2
dst victim
TCP SYN

TTL=2
dst victim
TCP SYN

TTL=3
dst victim
TCP SYN

TTL=3
dst victim
TCP SYN

If ttl = 0: discard
Else: reduce ttl

Forward

If ttl = 0: discard
Else: reduce ttl

Forward

Figure 6: Hop-count measuring via TTL-based scan,
to reconstruct the path between the attacker and the
victim.

5. CO-RESIDENCE VERIFICATION
In this section we show how to apply our interrupt-overloading

side channel, and TTL probing, for coresidency verification.
The attacker places the probed instance on di↵erent hosts,
migrating it to di↵erent hosts at each iteration of the at-
tack, attempting to (probabilistically) achieve co-residence.

When sampling a specific host, the attacker performs the
following procedure (see Figure 7): the attacker measures
distance from the probed instance to the victim, by running
the TTL scan. When the TTL, in the scan, between the
probed host and the victim is 0, the malicious client estab-
lishes a connection to the victim, via the public hostname of
the victim, and instructs the probers to send bursts to the
(internal IP address of the) probed host. If the probed host
resides on the same physical host as the victim instance,
the client will observe patterns, in its communication to the
victim, that correspond to the bursts sent by the probers.

Client

NICNICprobed

victim

prober

Benign

connection

command
channel

burst

Cloud

Figure 7: Co-residence verification via interrupt-
overloading side channel.

A simple extension of our co-residence testing technique,
can be applied to check if two (or more) victims reside on the
same physical host: run the procedure above against two (or
more) victim services. There are a number of motivations
for detecting if two victim services are placed on the same
physical host. For instance, if one victim is known to have
some vulnerability in its software, e.g., operating system or
web application, the attacker may use this information to
attack the neighbouring instances.

6. DEFENSES
Clearly preventing co-residence would solve most of the

attacks that we presented (it would not solve only the hop-
count measuring), but co-residence is one of the core prop-
erties of cloud computing paradigm that makes it appealing
for cloud providers and approachable, due to its low costs,
for customers.

We next propose a number of defenses, some are specific
to the cloud while others are related to design of packets’
processing and scheduling by network adapters. No single
proposed defense prevents all of our attacks, but they can
make it significantly harder to launch the attacks, thus mak-
ing it not su�ciently attractive for the attackers.

Cloud-Based Defenses.
We discuss a number of defenses which the cloud provider

can employ to prevent some of our attacks.
I A straight-forward defense is to block communication

between the internal hosts on the cloud. This is approach
is supported by Google Compute Engine and by Microsoft
Azure. Blocking internal communication would prevent most
of our attacks, including address deanonymisation and hop-
count measuring (notice that this would still allow learning
some information about the cloud topology, by running the
TTL scans to public address of the hosts). The downside
of this is that it would also have a negative impact on the
connectivity of customers’ instances. It would also require
appropriate hardware and software on the cloud network,

which the cloud provider may not be willing to invest in.
Furthermore, blocking internal communication does not pre-
vent co-residence attacks, from Section 5.

I A defense to prevent interrupt-overloading tests can be
to use separate network adapters for each instance. This
would ensure that tra�c, from di↵erent instances on the
same host, is not multiplexed. However, this countermea-
sure would also require appropriate hardware support from
the cloud provider.

I Cloud provider can use firewall based techniques to rate
limit tra�c to instances located on its network, which would
also prevent, or at least significantly limit techniques that
use interrupt-overloading tests.

Design of Network Adapters.
The research which studies e�cient design and architec-

tures of packet handling procedures by kernels, focuses on
benign network load, e.g., [33, 35]. To enhance robustness
to network attacks, systems should be designed to with-
stand maliciously devised flows, such as those exploited in
our interrupt-overloading tests.

7. CONCLUSIONS
In this work we study instances isolation on cloud plat-

forms. We show that given a public address of some victim
service, attackers can often find victim’s corresponding pri-
vate address and find its location within the cloud. Our
attacks are performed in three steps: (1) we deanonymise
the private IP address of some public victim service, then
(2) measure distance to the victim from attacker’s instance,
and finally (3) attempt to achieve co-residence. We propose
new techniques to accomplish these three steps. Our tech-
niques are based on timing side channels, and tra�c analysis.
Our techniques can be extended to perform complete cloud
topology discovery and mapping.

Our interrupt-overloading side channel is a generic (pro-
tocol independent) technique, which allows to determine
the internal IP address of a public service, and can also
be used for co-residence verification. Interrupt-overloading
technique can be applied for other attacks, and in partic-
ular, can be used to launch low-rate degradation/denial of
service (D/DoS) attacks on cloud services; low-rate attacks
against TCP flows were proposed in prior art, but were
launched using di↵erent techniques, e.g., see [13, 22]. We
leave it as a future work to investigate applications of our
interrupt-overloading technique for low-rate attacks against
cloud platforms and services.

We also showed how to use protocol specific, e.g., DNS
and Email, properties, to discover internal IP addresses of
these services.

We suggested a design of hop-count measuring technique,
that can be used to reconstruct a path, taken by packets,
between two instances, e.g., attacker’s and some victim’s.
This technique can be used to also check for co-residence
and to reconstruct the entire topology of the cloud network.

As we show in our work, address deanonymisation attacks
and attacks exploiting co-residence, via network channel, are
still possible, and e↵orts should be made to further investi-
gate techniques preventing such vulnerabilities. The main
message of our work is that allowing communication between
internal hosts is may be exploited for attacks. However, as
we also point out, completely blocking internal communica-
tion may not be a practical solution. In particular, internal

communication is required for many applications, and allows
to reduce communication costs on the cloud, as well as la-
tency for clients. Therefore, preventing our attacks, without
adverse impact on cloud applications and tenants, requires
further investigation.

Our techniques can also be used for benign purposes, to
verify service provided by the cloud to its clients, specifi-
cally, topology and placement verification. One of the im-
portant questions in cloud computing paradigm, is to enable
clients, via a systematic approach, to validate resources and
services that the cloud provides; see [37] for a discussion of
the challenges in realising such requirements and guarantees.
This includes ensuring that: (1) the applications of the cus-
tomers indeed consumed the physical resources, which the
cloud provider charges them for, or that (2) the platform
that the cloud provider supplied to the customer reflects the
one that cloud provider guaranteed to supply.

Our techniques can be applied to validate the placement
guarantees of the cloud provider to its customers. For in-
stance, if the customer wishes ensure that all its instances
are placed on a single physical host, or alternately, on sepa-
rate hosts, the customer can apply the interrupt-overloading
side channel in tandem with the hop-count measuring test.

Acknowledgements
We thank the anonymous referees for their feedback, which
helped us improve the outline of this manuscript. This re-
search was supported by the Ministry of Science, Technology
and Space, Israel, and by COMET K1, FFG - Austrian Re-
search Promotion Agency.

8. REFERENCES
[1] O. Acıiçmez, B. B. Brumley, and P. Grabher. New

results on instruction cache attacks. In Cryptographic
Hardware and Embedded Systems, CHES 2010, pages
110–124. Springer, 2010.

[2] H. Ballani, K. Jang, T. Karagiannis, C. Kim,
D. Gunawardena, and G. O’Shea. Chatty tenants and
the cloud network sharing problem. In Proceedings of
the 10th USENIX conference on Networked Systems
Design and Implementation, pages 171–184. USENIX
Association, 2013.

[3] A. Bates, B. Mood, J. Pletcher, H. Pruse, M. Valafar,
and K. Butler. Detecting co-residency with active
tra�c analysis techniques. In Proceedings of the 2012
ACM Workshop on Cloud computing security
workshop, pages 1–12. ACM, 2012.

[4] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,
N. Har’El, A. Gordon, A. Liguori, O. Wasserman, and
B.-A. Yassour. The turtles project: Design and
implementation of nested virtualization. In OSDI,
volume 10, pages 423–436, 2010.

[5] K. D. Bowers, M. van Dijk, A. Juels, A. Oprea, and
R. L. Rivest. How to tell if your cloud files are
vulnerable to drive crashes. In Proceedings of the 18th
ACM conference on Computer and communications
security, pages 501–514. ACM, 2011.

[6] S. Bugiel, S. Nürnberger, A.-R. Sadeghi, and
T. Schneider. Twin clouds: An architecture for secure
cloud computing. In Workshop on Cryptography and
Security in Clouds (WCSC 2011), 2011.

[7] P. Chen, D. Xu, and B. Mao. Clouder: a framework
for automatic software vulnerability location and
patching in the cloud. In Proceedings of the 7th ACM
Symposium on Information, Computer and
Communications Security, pages 50–50. ACM, 2012.

[8] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon,
R. Masuoka, and J. Molina. Controlling data in the
cloud: outsourcing computation without outsourcing
control. In Proceedings of the 2009 ACM workshop on
Cloud computing security, pages 85–90. ACM, 2009.

[9] A. Coates, A. O. Hero III, R. Nowak, and B. Yu.
Internet tomography. Signal Processing Magazine,
IEEE, 19(3):47–65, 2002.

[10] S. De Capitani di Vimercati, S. Foresti, and
P. Samarati. Managing and accessing data in the
cloud: Privacy risks and approaches. In Risk and
Security of Internet and Systems (CRiSIS), 2012 7th
International Conference on, pages 1–9. IEEE, 2012.

[11] P. Gasti, G. Ateniese, and M. Blanton. Deniable cloud
storage: sharing files via public-key deniability. In
Proceedings of the 9th annual ACM workshop on
Privacy in the electronic society, pages 31–42. ACM,
2010.

[12] D. Gullasch, E. Bangerter, and S. Krenn. Cache
games–bringing access-based cache attacks on aes to
practice. In Security and Privacy (SP), 2011 IEEE
Symposium on, pages 490–505. IEEE, 2011.

[13] A. Herzberg and H. Shulman. Stealth DoS attacks on
secure channels. In Proc. Symp. on Network and
Distributed Systems Security (NDSS ’10), San Diego,
CA, Feb. 2010. Internet Society.

[14] A. Herzberg and H. Shulman. Socket Overloading for
Fun and Cache-Poisoning. In Proceedings of the 29th
Annual Computer Security Applications Conference
(ACSAC). ACM, 2013.

[15] A. Juels and A. Oprea. New approaches to security
and availability for cloud data. Communications of the
ACM, 56(2):64–73, 2013.

[16] S. Kamara and K. Lauter. Cryptographic cloud
storage. In Financial Cryptography and Data Security,
pages 136–149. Springer, 2010.

[17] P. A. Karger and D. R. Sa↵ord. I/O for Virtual
Machine Monitors: Security and Performance Issues.
IEEE Security & Privacy, 6(5):16–23, 2008.

[18] A. D. Keromytis, R. Geambasu, S. Sethumadhavan,
S. J. Stolfo, J. Yang, A. Benameur, M. Dacier,
M. Elder, D. Kienzle, and A. Stavrou. The meerkats
cloud security architecture. In Distributed Computing
Systems Workshops (ICDCSW), 2012 32nd
International Conference on, pages 446–450. IEEE,
2012.

[19] B. H. Kim, W. Huang, and D. Lie. Unity: secure and
durable personal cloud storage. In Proceedings of the
2012 ACM Workshop on Cloud computing security
workshop, pages 31–36. ACM, 2012.

[20] S. R. Kleiman. Apparatus and method for interrupt
handling in a multi-threaded operating system kernel,
May 7 1996. US Patent 5,515,538.

[21] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM
Transactions on Computer Systems (TOCS),
18(3):263–297, 2000.

[22] A. Kuzmanovic and E. W. Knightly. Low-Rate
TCP-Targeted Denial of Service Attacks: the Shrew
vs. the Mice and Elephants. In SIGCOMM, pages
75–86, New York, NY, USA, 2003. ACM.

[23] S. Larsen, P. Sarangam, R. Huggahalli, and
S. Kulkarni. Architectural breakdown of end-to-end
latency in a tcp/ip network. International Journal of
Parallel Programming, 37(6):556–571, 2009.

[24] R. B. Lee. Hardware-enhanced access control for cloud
computing. In Proceedings of the 17th ACM
symposium on Access Control Models and
Technologies, pages 1–2. ACM, 2012.

[25] J. Liu. Evaluating standard-based self-virtualizing
devices: A performance study on 10 gbe nics with
sr-iov support. In Parallel & Distributed Processing
(IPDPS), 2010 IEEE International Symposium on,
pages 1–12. IEEE, 2010.

[26] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks
and countermeasures: the case of aes. In Topics in
Cryptology–CT-RSA 2006, pages 1–20. Springer, 2006.

[27] W. Pan, Y. Zhang, M. Yu, and J. Jing. Improving
virtualization security by splitting hypervisor into
smaller components. In Data and Applications Security
and Privacy XXVI, pages 298–313. Springer, 2012.

[28] L. Popa, M. Yu, S. Y. Ko, S. Ratnasamy, and I. Stoica.
Cloudpolice: taking access control out of the network.
In Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks, page 7. ACM, 2010.

[29] H. Raj, R. Nathuji, A. Singh, and P. England.
Resource management for isolation enhanced cloud
services. In Proceedings of the 2009 ACM workshop on
Cloud computing security, pages 77–84. ACM, 2009.

[30] K. Ramakrishnan. Performance considerations in
designing network interfaces. Selected Areas in
Communications, IEEE Journal on, 11(2):203–219,
1993.

[31] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage.
Hey, you, get o↵ of my cloud: exploring information
leakage in third-party compute clouds. In Proceedings
of the 16th ACM conference on Computer and
communications security, pages 199–212. ACM, 2009.

[32] A.-R. Sadeghi, T. Schneider, and M. Winandy.
Token-based cloud computing. In Trust and
Trustworthy Computing, pages 417–429. Springer,
2010.

[33] K. Salah. To coalesce or not to coalesce.
AEU-International Journal of Electronics and
Communications, 61(4):215–225, 2007.

[34] K. Salah, K. El-Badawi, and F. Haidari. Performance
analysis and comparison of interrupt-handling schemes
in gigabit networks. Computer Communications,
30(17):3425–3441, 2007.

[35] K. Salah and A. Qahtan. Boosting throughput of
snort nids under linux. In Innovations in Information
Technology, 2008. IIT 2008. International Conference
on, pages 643–647. IEEE, 2008.

[36] J. H. Salim, R. Olsson, and A. Kuznetsov. Beyond
softnet. In Proceedings of the 5th annual Linux
Showcase & Conference, volume 5, pages 18–18, 2001.

[37] V. Sekar and P. Maniatis. Verifiable resource
accounting for cloud computing services. In
Proceedings of the 3rd ACM workshop on Cloud

computing security workshop, pages 21–26. ACM,
2011.

[38] J. Shi, X. Song, H. Chen, and B. Zang. Limiting
cache-based side-channel in multi-tenant cloud using
dynamic page coloring. In Dependable Systems and
Networks Workshops (DSN-W), 2011 IEEE/IFIP 41st
International Conference on, pages 194–199. IEEE,
2011.

[39] N. C. A. System. Vulnerability Summary for
CVE-2007-4993. http://web.nvd.nist.gov/view/
vuln/detail?vulnId=CVE-2007-4993, September
2007.

[40] N. C. A. System. Vulnerability Summary for
CVE-2007-5497. http://web.nvd.nist.gov/view/
vuln/detail?vulnId=CVE-2007-5497, December 2007.

[41] N. C. A. System. Vulnerability Summary for
CVE-2010-2240. http://web.nvd.nist.gov/view/
vuln/detail?vulnId=CVE-2010-2240, March 2010.

[42] J. Szefer, E. Keller, R. B. Lee, and J. Rexford.
Eliminating the hypervisor attack surface for a more
secure cloud. In Proceedings of the 18th ACM
conference on Computer and communications security,
pages 401–412. ACM, 2011.

[43] E. Tromer, D. A. Osvik, and A. Shamir. E�cient
cache attacks on aes, and countermeasures. Journal of
Cryptology, 23(1):37–71, 2010.

[44] D. Tsafrir, Y. Etsion, D. G. Feitelson, and
S. Kirkpatrick. System noise, os clock ticks, and
fine-grained parallel applications. In Proceedings of the
19th annual international conference on
Supercomputing, pages 303–312. ACM, 2005.

[45] P. Willmann, J. Shafer, D. Carr, A. Menon, S. Rixner,
A. L. Cox, and W. Zwaenepoel. Concurrent direct
network access for virtual machine monitors. In High
Performance Computer Architecture, 2007. HPCA
2007. IEEE 13th International Symposium on, pages
306–317. IEEE, 2007.

[46] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen,
and R. Schlichting. An exploration of l2 cache covert
channels in virtualized environments. In Proceedings of
the 3rd ACM workshop on Cloud computing security
workshop, pages 29–40. ACM, 2011.

[47] M. Zec, M. Mikuc, and M. Zagar. Estimating the
impact of interrupt coalescing delays on steady state
tcp throughput. In Proceedings of the 10th SoftCOM,
volume 2002. Citeseer, 2002.

[48] F. Zhang, J. Chen, H. Chen, and B. Zang. Cloudvisor:
retrofitting protection of virtual machines in
multi-tenant cloud with nested virtualization. In
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, pages 203–216. ACM,
2011.

[49] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter.
Homealone: Co-residency detection in the cloud via
side-channel analysis. In Security and Privacy (SP),
2011 IEEE Symposium on, pages 313–328. IEEE,
2011.

[50] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Cross-vm side channels and their use to extract
private keys. In Proceedings of the 2012 ACM
conference on Computer and communications security,
pages 305–316. ACM, 2012.

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-4993
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-4993
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-5497
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-5497
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-2240
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-2240

	Introduction
	Related Work
	IP Address Deanonymisation
	Address Discovery via Interrupts
	Interrupt Driven Scheduling
	Interrupt-Overloading Side Channels
	Experimental Evaluation

	Email Server Discovery
	Internal Address Block Scan
	Server-Bounce (External) Scan

	Cloud Scan and Evading Detection

	Hop-Count Measuring
	Co-Residence Verification
	Defenses
	Conclusions
	References

